TY - JOUR
T1 - De novo RNA-seq analysis of the oleaginous microalgae Ankistrodesmus sp. UCP0001
T2 - Gene identification and metabolic pathways reconstruction for the biosynthesis of fatty acids and triacylglycerols
AU - Castro, Juan C.
AU - Maddox, J. Dylan
AU - Paredes, Jae D.
AU - Rodriguez, Hicler N.
AU - Aguilar, Carla P.
AU - Marapara, Jorge L.
AU - Castro, Carlos G.
AU - Casuso, Maria Z.
AU - Cobos, Marianela
N1 - Publisher Copyright:
© 2017 Copyright International Knowledge Press. All rights reserved.
PY - 2017
Y1 - 2017
N2 - Microalgae have great potential as feedstock to produce next-generation biofuels. The scarceness of genomic level information, however, prevents the rational de novo microalgae strain design. In this research, we describe the next-generation sequencing, de novo assembly, and functional annotation of the transcriptome of Ankistrodesmus sp. UCP0001. In total 48,867,830 high-quality sequence reads were de novo assembled into 38,414 unigenes (mean length = 508 bp, N50 = 1038 bp). Seventytwo percent of unigenes presented mapping information. Based on the KEGG pathway assignment, the fatty acids and the triacylglycerol biosynthesis pathways were reconstructed. Our results demonstrate that the synergy among high-throughput sequencing technologies and appropriate bioinformatics tools provides a fast, low-cost, and effective approach to generate invaluable functional genomic information in non-model microalgae species (e.g., Ankistrodesmus sp.). With the de novo assembled and annotated transcriptome we have successfully identified genes encoding enzymes and reconstructed metabolic pathways for the biosynthesis of fatty acids and triacylglycerols in this microalgae species. This genetic information could be used for the de novo microalgae strain design with desirable characteristics to produce biodiesel and capabilities for the biosynthesis of others valuable bioactive compounds of interest to the pharmacological, food, and cosmetic industries.
AB - Microalgae have great potential as feedstock to produce next-generation biofuels. The scarceness of genomic level information, however, prevents the rational de novo microalgae strain design. In this research, we describe the next-generation sequencing, de novo assembly, and functional annotation of the transcriptome of Ankistrodesmus sp. UCP0001. In total 48,867,830 high-quality sequence reads were de novo assembled into 38,414 unigenes (mean length = 508 bp, N50 = 1038 bp). Seventytwo percent of unigenes presented mapping information. Based on the KEGG pathway assignment, the fatty acids and the triacylglycerol biosynthesis pathways were reconstructed. Our results demonstrate that the synergy among high-throughput sequencing technologies and appropriate bioinformatics tools provides a fast, low-cost, and effective approach to generate invaluable functional genomic information in non-model microalgae species (e.g., Ankistrodesmus sp.). With the de novo assembled and annotated transcriptome we have successfully identified genes encoding enzymes and reconstructed metabolic pathways for the biosynthesis of fatty acids and triacylglycerols in this microalgae species. This genetic information could be used for the de novo microalgae strain design with desirable characteristics to produce biodiesel and capabilities for the biosynthesis of others valuable bioactive compounds of interest to the pharmacological, food, and cosmetic industries.
KW - Biodiesel
KW - High-throughput sequencing
KW - Lipid biosynthesis
KW - Oleaginous microalgae
KW - Transcriptome analysis
UR - http://www.scopus.com/inward/record.url?scp=85028658810&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85028658810
SN - 0972-2025
VL - 18
SP - 219
EP - 230
JO - Plant Cell Biotechnology and Molecular Biology
JF - Plant Cell Biotechnology and Molecular Biology
IS - 5-6
ER -