TY - JOUR
T1 - Structural diversity and defensive properties of norditerpenoid alkaloids
AU - González-Coloma, Azucena
AU - Reina, Matías
AU - Medinaveitia, Alberto
AU - Guadaño, Ana
AU - Santana, Omar
AU - Martínez-Díaz, Rafael
AU - Ruiz-Mesía, Lastenia
AU - Alva, Allenger
AU - Grandez, Maritza
AU - Díaz, Rafael
AU - Gavín, José A.
AU - De La Fuente, Gabriel
N1 - Funding Information:
Acknowledgments—This work was partially supported by grants CICYT (DGES PB97-1265), MCYT (BQU2001-1505), CAM (07M/0073/2002), and CYTED IV.13. We gratefully acknowledge S. Carlin for language revision.
PY - 2004/7
Y1 - 2004/7
N2 - We have tested the insect antifeedant and toxic activity of 43 norditerpenoid alkaloids on Spodoptera littoralis and Leptinotarsa decemlineata including eserine (physostigmine), anabasine, and atropine. Antifeedant effects of the test compounds were structure- and species-dependent. The most active antifeedants to L. decemlineata were 1,14-diacetylcardiopetaline (9) and 18-hydroxy-14-O-methylgadesine (33), followed by 8-O-methylconsolarine (12), 14-O-acetyldelectinine (27), karakoline (7), cardiopetaline (8), 18-O-demethylpubescenine (13), 14-O-acetyldeltatsine (18), takaosamine (21), ajadine (24), and 8-O-methylcolumbianine (6) (EC 50 <1 μg/cm 2). This insect showed a moderate response to atropine. S. littoralis had the strongest antifeedant response to 24, 18, 14-O-acetyldelcosine (19), and delphatine (29) (EC 50 <3 μg/cm 2). None of the model substances affected the feeding behavior of this insect. The most toxic compound to L. decemlineata was aconitine (1), followed by cardiopetalidine (10) (% mortality >60), 14-deacetylpubescenine (14), 18-O-benzoyl-18-O-demethyl-14-O-deacetylpubescenine (17), 14-O- acetyldelcosine (19), 14-deacetylajadine (25) and methyllycaconitine (30) (% mortality >45). Orally injected S. littoralis larvae were negatively affected by 1, cardiopetaline (8), 10, 1,14-O-acetylcardiopetalidina (11), 12, 14, 1,18-O-diacetyl-19-oxo-gigactonine (41), olivimine (43), and eserine in varying degrees. Their antifeedant or insecticidal potencies did not parallel their reported nAChR binding activity, but did correlate with the agonist/antagonist insecticidal/antifeedant model proposed for nicotininc insecticides. A few compounds [14, tuguaconitine (38), 14-demethyldelboxine (40), 19, dehydrodelsoline (36), 18-O-demethylpubescenine (13), 41, 9, and delcosine (23)] had selective cytotoxic effects to ward insect-derived Sf9 cells. None were cytotoxic to mammalian CHO cells and none increased Trypanosoma cruzi mortality. The selective cytotoxic effects of some structures indicate that they can act on biological targets other than neuroreceptors.
AB - We have tested the insect antifeedant and toxic activity of 43 norditerpenoid alkaloids on Spodoptera littoralis and Leptinotarsa decemlineata including eserine (physostigmine), anabasine, and atropine. Antifeedant effects of the test compounds were structure- and species-dependent. The most active antifeedants to L. decemlineata were 1,14-diacetylcardiopetaline (9) and 18-hydroxy-14-O-methylgadesine (33), followed by 8-O-methylconsolarine (12), 14-O-acetyldelectinine (27), karakoline (7), cardiopetaline (8), 18-O-demethylpubescenine (13), 14-O-acetyldeltatsine (18), takaosamine (21), ajadine (24), and 8-O-methylcolumbianine (6) (EC 50 <1 μg/cm 2). This insect showed a moderate response to atropine. S. littoralis had the strongest antifeedant response to 24, 18, 14-O-acetyldelcosine (19), and delphatine (29) (EC 50 <3 μg/cm 2). None of the model substances affected the feeding behavior of this insect. The most toxic compound to L. decemlineata was aconitine (1), followed by cardiopetalidine (10) (% mortality >60), 14-deacetylpubescenine (14), 18-O-benzoyl-18-O-demethyl-14-O-deacetylpubescenine (17), 14-O- acetyldelcosine (19), 14-deacetylajadine (25) and methyllycaconitine (30) (% mortality >45). Orally injected S. littoralis larvae were negatively affected by 1, cardiopetaline (8), 10, 1,14-O-acetylcardiopetalidina (11), 12, 14, 1,18-O-diacetyl-19-oxo-gigactonine (41), olivimine (43), and eserine in varying degrees. Their antifeedant or insecticidal potencies did not parallel their reported nAChR binding activity, but did correlate with the agonist/antagonist insecticidal/antifeedant model proposed for nicotininc insecticides. A few compounds [14, tuguaconitine (38), 14-demethyldelboxine (40), 19, dehydrodelsoline (36), 18-O-demethylpubescenine (13), 41, 9, and delcosine (23)] had selective cytotoxic effects to ward insect-derived Sf9 cells. None were cytotoxic to mammalian CHO cells and none increased Trypanosoma cruzi mortality. The selective cytotoxic effects of some structures indicate that they can act on biological targets other than neuroreceptors.
KW - Aconitum
KW - Consolida
KW - cytotoxic structure-activity relationships
KW - Delphinium
KW - insecticidal
KW - norditerpene alkaloids
UR - http://www.scopus.com/inward/record.url?scp=4344606140&partnerID=8YFLogxK
U2 - 10.1023/B:JOEC.0000037747.74665.0a
DO - 10.1023/B:JOEC.0000037747.74665.0a
M3 - Article
C2 - 15503527
AN - SCOPUS:4344606140
SN - 0098-0331
VL - 30
SP - 1393
EP - 1408
JO - Journal of Chemical Ecology
JF - Journal of Chemical Ecology
IS - 7
ER -